Significant Location Detection & Prediction in Cellular Networks Using Artificial Neural Networks
نویسندگان
چکیده
Location services and applications, based on network data or global positioning systems, are greatly influencing and changing the way people use mobile phone networks by improving not only user-applications but also the network management part. These applications and services can be further developed by introducing location prediction. We design a system that logs cell id and timestamp data from the users’ mobile device, detects the significance of the location to the user, such as home and workplace, and predicts future locations over a chosen time period using artificial neural networks. A novel method is designed for location detection that automatically determines the significance of the location to the user, by spatial and temporal analysis. In our approach, the neural network is automatically adapted, with the help of the location detection algorithm, to the period of the week for which a prediction is desired, achieving accurate weekday and weekend location prediction.
منابع مشابه
Fault Detection and Location in DC Microgrids by Recurrent Neural Networks and Decision Tree Classifier
Microgrids have played an important role in distribution networks during recent years. DC microgrids are very popular among researchers because of their benefits. Protection is one of the significant challenges in the way of microgrids progress. As a result, in this paper, a fault detection and location scheme for DC microgrids is proposed. Due to advances in Artificial Intelligence (AI) and s...
متن کاملPrediction the Return Fluctuations with Artificial Neural Networks' Approach
Time changes of return, inefficiency studies performed and presence of effective factors on share return rate are caused development modern and intelligent methods in estimation and evaluation of share return in stock companies. Aim of this research is prediction of return using financial variables with artificial neural network approach. Therefore, the statistical population of this study incl...
متن کاملIntegration of Color Features and Artificial Neural Networks for In-field Recognition of Saffron Flower
ABSTRACT-Manual harvesting of saffron as a laborious and exhausting job; it not only raises production costs, but also reduces the quality due to contaminations. Saffron quality could be enhanced if automated harvesting is substituted. As the main step towards designing a saffron harvester robot, an appropriate algorithm was developed in this study based on image processing techniques to recogn...
متن کاملProduct Yields Prediction of Tehran Refinery Hydrocracking Unit Using Artificial Neural Networks
متن کامل
پیش یابی ارتفاع موج شاخص در خلیج فارس با استفاده از شبکه های عصبی مصنوعی و مقایسه آن با درخت های تصمیم رگرسیونی
Prediction of wave height is of great importance in marine and coastal engineering. In this study, the performances of artificial neural networks (feed forward with back propagation algorithm) for online significant wave heights prediction, in Persian Gulf, were investigated. The data set used in this study comprises wave and wind data gathered from shallow water location in Persian Gulf. Curre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015